CEL\&ETL - General Electronics
T014

Thursday, 29/11/2018 08:30-11:30 AM

WORKFORCE DEVELOPMENT AUTHORITY

P.O. BOX 2707 Kigali, Rwanda Tel: (+250) 255113365

ADVANCED LEVEL NATIONAL EXAMINATIONS, 2018, TECHNICAL AND PROFESSIONAL STUDIES

EXAM TITLE: GENERAL ELECTRONICS
OPTIONS: Computer Electronics (CEL)
Electronics and Telecommunication (ETL)
DURATION: 3 hours

INSTRUCTIONS:

The paper is composed of three (3) main Sections as follows:
Section I: Sixteen (16) compulsory questions.
55 marks
Section II: Attempt any three (3) out of five questions. 30 marks

Section III: Attempt any one (1) out of three questions. 15 marks

Note:

Every candidate is required to carefully comply with the above instructions. Penalty measures will be applied on their strict consideration.

1. In most of electronic components, semiconductors are preferable than conductors and insulators. Explain why?
2. When do you say that a jpn junction diode is forward biased?
(4 marks)
3. BJT are bipolar whereas UJT are unipolar. What does it mean?
4. a)Define Optoelectronics.
b) What are the two main categories of optoelectronic devices? Give an example for each case.
5. Find the equivalent capacitance between point A and B of the following cipeuitj;

6. State two functions of an inductor in electronic circuits.
7. Which one is more doped between collector and emmiter of NPN transistor? Explain your answer.
8. Within an MP3 player design the indicator part is shown on the diagram below:

The datasheet of LED indicates that the limited current varies from 20 mA to $P_{\mathrm{F}} 20 \mathrm{r} 10^{-3} \mathrm{~A}$ 100 mA and the forward biased voltage is 1.8 V . If the device will operate with $\mathrm{I}_{2}=100 \mathrm{k} 10^{-3} \mathrm{~A}$ 3.7 V battery $\quad \mathrm{V}=1.8 \mathrm{~V}$ 3.7 V battery, calculate the minimum and maximum value of the current limitting resistor R .

$$
\frac{n}{2} \times 15_{6}=
$$

(4 marks)

WDA/TVET/ETL\&CEL - General Electronics - Academic Year 2018 -Page 2 of 4

$$
\left.I_{T}=\frac{V_{Q}}{V_{T}}\right) \quad\left(\frac{R_{\Omega}}{R_{1}+R_{2}}\right) V_{T}
$$

9. Derive the Boolean expression for the logic circuit shown below:

(2 marks) function: $\quad Y=A B$
10. Give the range of the following resistor: Red Red Brown Silver .
11. a) Define a multimeter accuracy.
b) The datasheet of a multimeter shows that its accuracy is 1%. A technician has measured the voltage and found 220 Volts. What is the actual voltage?
12. What is the purpose of a filter circuit in common sens?
13. What does express the ratio Ic/Ie or a or the transport factor of a transistor?

How is it affecting the quality of a transistor?
15. How are photo-FETs activated?
16. What type of filter does present the wave diagram below? Give one application of such a filter. Band pass filter (Not sure)

Section II. Choose and answer any three (3) questions. , $\mathbf{3 0}$ marks

17. Put the names (or label) of part of Cathode ray Oscilloscope as shown by short lines below:

18. Simplify the following expression using Boolean algebra technique $Z=A B+A(B+C)+B(B+C)$
(10 marks)
19. Explain the mode of operation of a potentiometer.
(10 marks)
20. A transistor operating in CB configuration has $\mathrm{I}_{\mathrm{C}}=2.98 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=3.00 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{CO}}=0.01 \mathrm{~mA}$. What current will flow in the collec ${ }^{+}$or circuit of this transistor when connected in CE configuration with a base surrent of $30 \mu \mathrm{~A}$? ($\mathbf{1 0}$ marks)
(21.) A. What are the important specification of a digital-to-analog (D/A) converters do you base on during their selection?
B. Calculate the produced output voltage of a 10 -bit digital-to-analog (D/A) converter having an output ran'ge from $0-9 \mathrm{v}$ when the input binary number is $\frac{110001010 .}{\text { Cixio }}$
(10 marks)
Section III. Choose and answer any one (1) question.
15 marks
21. A crystal diode having internal resistance $r_{f}=20 \Omega$ is used for half-wave rectification. If the applied voltage $v=50 \sin \omega t$ and load resistance $R_{L}=800$ Ω, find: (i) Im, Idc, Irms
(ii) a.c. power input and d.c. power output
(iii) d.c. output voltage
(iv) Efficiency of rectification.
22. The circuit below is JFET fixed bias. Determine: (a) $\mathrm{V}_{G S}$, (b) $\mathrm{I}_{\mathrm{D}},(c) \mathrm{V}_{\mathrm{DS}},(\mathrm{d}) \mathrm{V}_{\mathrm{D}}$, (e) V_{G} and (f) V_{S}.
(15 marks)

23. Design a 3-input (A,B,C) digital circuit that will give at its output (X) a logic, D only if the binary number formed at the input has more ones than zeros.
a) Find the corresponding truth table,
b) Find output expression, g
c) Simplify the output expression using K-map,
d) Draw the logic circuit.

